Polymathic

Digital transformation, higher education, innovation, technology, professional skills, management, and strategy


Article analysis: LinkedIn faced criticism for updating terms of service after using user data for AI training | The real issue was LinkedIn’s poor communication and lack of transparency | Future companies need better coordination in content, AI learning, and communication strategies to avoid similar backlash

“The bad optics happened because these brands failed to communicate to their existing audiences.”

Where LinkedIn’s AI Move Went Wrong

Analyzing LinkedIn’s AI Move: Lessons in Communication

In analyzing the article “Where LinkedIn’s AI Move Went Wrong,” we uncover key points and insights into LinkedIn’s recent controversy regarding its terms of service update. The central argument revolves around LinkedIn’s lack of transparency in using user data to train AI models before updating its terms of service, which sparked public outcry.

Lack of Communication: The Core Issue


The article effectively contextualizes LinkedIn’s actions against similar missteps by Adobe, Meta, and Zoom. Robert Rose, CMI’s chief strategy advisor, argues that LinkedIn’s real error lay in its communication strategy or rather, the lack of it. The backlash wasn’t purely about data usage; it was the principle of making changes unannounced that upset users.

A Contrarian Perspective


Rose’s suggestion that users primarily expect their data to improve platform services presents an interesting counter-narrative. This view challenges the conventional wisdom that prioritizes stringent user consent. However, such an assumption might not universally represent user sentiments, especially concerning data privacy and ethical AI usage.

Lessons for Future Endeavors


The article offers a forward-thinking perspective by emphasizing the inevitability of platforms utilizing user data for AI purposes. However, it stresses that companies must synchronize their legal, marketing, and communication efforts to avoid public relations pitfalls. This critique is both practical and empowering, urging businesses to refine their strategies.

Critical Evaluation


While the article is insightful, it could benefit from incorporating diverse perspectives and more empirical evidence. The argument heavily relies on Rose’s single viewpoint, potentially oversimplifying the broad spectrum of user concerns. Nonetheless, the emphasis on communication provides a results-driven takeaway that other companies can apply proactively.

By focusing on better coordination and transparency, businesses can foster trust and engagement in a forward-thinking, ethically sound manner. This analysis underscores the importance of clear communication in navigating the complex terrain of AI and data usage.


Discover more from Polymathic

Subscribe to get the latest posts sent to your email.



About Me

Visionary leader driving digital transformation across higher education and Fortune 500 companies. Pioneered AI integration at Emory University, including GenAI and AI agents, while spearheading faculty information systems and student entrepreneurship initiatives. Led crisis management during pandemic, transitioning 200+ courses online and revitalizing continuing education through AI-driven improvements. Designed, built, and launched the Emory Center for Innovation. Combines Ph.D. in Philosophy with deep tech expertise to navigate ethical implications of emerging technologies. International experience includes DAAD fellowship in Germany. Proven track record in thought leadership, workforce development, and driving profitability in diverse sectors.

Favorite sites

  • Daring Fireball

Favorite podcasts

  • Manager Tools

Newsletter

Newsletter